Almost Kenmotsu 3-h-metric as a cotton soliton

نویسندگان

چکیده

Purpose Cotton soliton is a newly introduced notion in the field of Riemannian manifolds. The object this article to study properties on certain contact metric Design/methodology/approach authors consider almost Kenmotsu 3-manifolds. use local basis manifold that helps terms partial differential equations. Findings First potential vector pointwise collinear with Reeb and prove non-existence such soliton. Next assume orthogonal field. It proved non-Kenmotsu 3-h-manifold an eigen Ricci operator steady locally isometric to. Originality/value results paper are new interesting. Also, Proposition 3.2 will be helpful further space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Kenmotsu 3-h-manifolds with cyclic-parallel Ricci tensor

In this paper, we prove that the Ricci tensor of an almost Kenmotsu 3-h-manifold is cyclic-parallel if and only if it is parallel and hence, the manifold is locally isometric to either the hyperbolic space H3(−1) or the Riemannian product H2(−4)× R. c ©2016 All rights reserved.

متن کامل

On 3-dimensional Almost Kenmotsu Manifolds Admitting Certain Nullity Distribution

The aim of this paper is to characterize 3-dimensional almost Kenmotsu manifolds with ξ belonging to the (k, μ)′-nullity distribution and h′ 6= 0 satisfying certain geometric conditions. Finally, we give an example to verify some results.

متن کامل

Sasakian Metric as a Ricci Soliton and Related Results

We prove the following results: (i) A Sasakian metric as a nontrivial Ricci soliton is null η-Einstein, and expanding. Such a characterization permits to identify the Sasakian metric on the Heisenberg group H as an explicit example of (non-trivial) Ricci soliton of such type. (ii) If an ηEinstein contact metric manifold M has a vector field V leaving the structure tensor and the scalar curvatur...

متن کامل

Special connections in almost paracontact metric geometry

‎Two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections‎: ‎Levi-Civita‎, ‎canonical (Zamkovoy)‎, ‎Golab and generalized dual‎. ‎Their relationship is also analyzed with a special view towards their curvature‎. ‎The particular case of an almost paracosymplectic manifold giv...

متن کامل

Invariant Submanifolds of Kenmotsu Manifolds Admitting Quarter Symmetric Metric Connection

The object of this paper is to study invariant submanifolds M of Kenmotsu manifolds M̃ admitting a quarter symmetric metric connection and to show that M admits quarter symmetric metric connection. Further it is proved that the second fundamental forms σ and σ with respect to LeviCivita connection and quarter symmetric metric connection coincide. Also it is shown that if the second fundamental f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arab Journal of Mathematical Sciences

سال: 2022

ISSN: ['1319-5166', '2588-9214']

DOI: https://doi.org/10.1108/ajms-10-2020-0103